Neueste weiterentwickelte chemometrische Methoden

Sie suchen nach den neusten weiterentwickelten chemometrischen Methoden, um bessere NIR-Kalibrierungs Modelle zu erstellen? Methoden und Algorithmen wie:
  • Künstliche Neuronale Netze (KNN, ANN)
  • Allgemeine Regression Neural Networks (GR-NN)
  • RBF Neuronale Netze (RBF-NN)
  • Support Vector Machines (SVM)
  • Multiway Partial Least Squares (MPLS)
  • Orthogonale PLS (OPLS), (O-PLS), OPLS-AA, OPLS-ANN
  • R-PLS, UVE-PLS, Rüve-PLS, PLS LOCAL
  • Hierarchische Kernel Partial Least Squares (HKPLS)
  • Random Forest (RF)
  • usw.
und Daten-Vorverarbeitungs Methoden wie
  • Erweiterte Multiplikative Signal Correction (EMSC)
  • Orthogonale Signal Correction (OSC)
  • Dynamische orthogonale Projektion (DOP)
  • Fehlerbeseitigung durch orthogonale Subtraktion (EROS)
  • Externe Parameter Orthogonalisierung (EPA)
  • usw.
die z.T. erhältlich sind als Module für Software-Pakete wie Matlab, Octave, R-Project, usw. Warum viel Zeit und Geld investieren in neue Werkzeuge? Haben Sie es wirklich ausgiebig versucht, Ihre Kalibrierungen mit Standard-Methoden zu optimieren? Zu den chemometrischen Standard-Methoden gehören Partial Least Squares (PLS), Principal Component Regression (PCR) und multiple lineare Regression (MLR), diese sind verfügbar in nahezu allen chemometrischen Software-Paketen. Sind Sie sicher, dass Sie alle guten Regeln und Optimierungsmöglichkeiten versucht haben? Verwenden Sie einfach die üblichen kompatiblen Standard-Methoden, wir sind auf die Optimierung und Erstellung von NIR-Kalibrierungen spezialisiert, lassen Sie uns helfen, kontaktieren Sie uns!

Comments are closed.