Spettroscopia e Chemiometria Weekly News #5+6, 2017


Chemometrics

Non-Destructive Sensor-Based Prediction of Maturity and Optimum Harvest Date of Sweet Cherry Fruit | sensors LINK


IDC unveils its Top 10 Predictions for global Robotics Industry Industry40 Robotics LINK


Spectroscopy

Global Molecular Spectroscopy Market is expected to reach USD 6.712 billion till 2024. htt… LINK!


Near Infrared

Assessing pre-harvest sprouting in cereals using near-infrared spectroscopy-based metabolomics LINK


Rapid screening of commercial extra virgin olive oil products for authenticity: Performance of a handheld NIR device LINK


Hyperspectral

Imec () launches TDI, multispectral and hyperspectral sensors | imaging HSI LINK


Near-infrared hyperspectral imaging of lamination and finishing processes in textile technology LINK


Spectral Imaging

Viavi Solutions and ESPROS Photonics Corporation Debut New Miniaturized Spectral Sensor and Multispectral Sensor LINK


Equipment

Meta-lenses bring benchtop performance to small, hand-held spectrometer – Science Daily LINK



Scan anywhere with Neospectra Spectrometer Case powered by XPNDBLS PhotonicsWest … LINK!


Agriculture

World feed production exceeds 1 billion MT LINK


Chemometric soil analysis on the determination of specific bands for the detection of magnesium & potassium by … LINK


Other

This app uses spectral analysis to analyze objects and their makeup HawkSpex LINK


Research details developments in the multivariate analysis software industry | MVA LINK

“The worlds first ever spectroscopy enabled iPhone!” Check out our video to see it in action: LINK


Investments in AI will triple in 2017. ($47 billion by 2020 per ) CIO CMO | LINK


Some aspects of fetal development have long puzzled scientists, but new molecular technologies are shining a light: https:/… LINK!


CalibrationModel.com

Spectroscopy and Chemometrics News Weekly 3+4, 2017 | Spectroscopy NIRS MVDA… LINK


Spektroskopie und Chemometrie Neuigkeiten Wöchentlich 3+4, 2017 | NIRS Spektroskopie Chemometrie Multivariate LINK


Spettroscopia e Chemiometria Weekly News 3+4, 2017 | NIRS Spettroscopia Chemiometria news LINK


WHITE PAPER: A novel knowledge-based Chemometric Software Framework for quantitative NIRS Calibration Modeling LINK



Improve Accuracy of fast non-destructive NIR Measurements by Optimal Calibration | spectroscopy sensor modeling LINK


NIRS as a secondary method requires extensive calibration on an ongoing basis | foodindustry Digitalization IoT LINK


Services for Optimization of Chemometric Application Methods of Near-Infrared Spectroscopy | Quality Control NIRS LINK


► Timesaving NIRS Calibration ► near-infrared spectroscopy | protein fat moisture sensor measurement scanning LINK





Le procedure di calibrazione NIR – Realizzazione di curve di calibrazione NIRS spettroscopia

Do you know the effect that you prefer to try out their favorite data pretreatments in combination and often try the same wavelength selections based spectra of the visualized?

You try as six to ten combinations until one of them selects his favorite calibration model, to then continue to optimize. Since then suddenly fall to outliers, because it goes in depth, so is familiar with the data, we know now the spectra of numbers of outliers and is familiar with the extreme values.

Now, the focus is on the major components (principal components, Latent Variables, factors) and makes sure not to over-fit and under-fit not to. The whole takes a few hours and finally one is content with the model found.

So what would happen if you all in the beginning tried variants found outliers removed and re-evaluated and compared? The results would be better than that of the previous model choice? One does not try out? Because it is cumbersome and takes hours again?

We have developed a software which simplifies this so that also the number of model variations can be increased as desired. The variants generation is automated with an intelligent control system, as well as the optimization and comparing the models and finally the final selection of the best calibration model.

Our software includes all the usual known data pretreatment methods (data pre-processing) and can combine them useful. Since many Preteatments are directly dependent on the wavelength selection, such as the normalization the determined within a wavelength range of the scaling factors to normalize the spectra so that pretreatments with the wavelength ranges may be combined. So a variety of settings sensible model comes together that are all calculated and optimized. For the automatic selection of the relevant wavelength ranges, different methods are used, which are based on the spectral intensities. Thus, for example, regions with total absorption is not used, and often interfering water bands removed or retained.

Over all the calculated model variations as a summary outlier analysis can be made. Are there any new outliers (hidden outlier) discovered, all previous models can be automatically recalculated, optimized and compared without these outliers.

From this great number of calculated models with the statistical quality reviews (prediction performance) the optimum calibration can now be selected. For this purpose, not simply sorting by the prediction error (prediction error, SEP RMSEP) or the coefficient of determination (coefficient of determination r2), but by several statistical and test values are used jointly toward the final assessment of optimal calibration.

Thus we have created a platform that allows the highly automated work what a man can never do with a commercial software.

We therefore offer the largest number of matched to your application problem modeling calculations and choose the best calibration for you!

This means that our results are faster, more accurate, robust and objective basis (person independent) and quite easy for you to apply.

You have the full control of the models supplied by us, because we provide a clearly structured and detailed blueprint of the complete calibration, with all settings and parameters, with all necessary statistical characteristics and graphics.

Using this blueprint, you can adjust the quantitative calibration model itself in the software you use, understand and compare. You have everything under control form model creation, model validation and model refinement.

Your privacy is very important to us. The NIR data that you briefly provide us for the custom calibration development will remain of course your property. Your NIR data will be deleted after the job with us.

Interested, then do not hesitate to contact us.

(English) NIR Spectroscopy Calibration Report for quantitative predictive models

When you send your quantitative NIR spectra data to our NIR Calibration Model Service, you get a detailed calibration report (calibration protocol) of the found optimal calibration settings, so you are able to see all insights and easily re-build the model in your NIR/Chemometric software.

Here is a part of our calibration report, that exactly describes the data used in the calibration set (CSet), the validation set (VSet) and the test set (TSet). The numbers are the number ids of the spectra in your delivered NIR data file.


The calibration method settings and parameters are
Waveselection : the variable selection or wavenumber selection or wavelength selection
Pretreatments : the spectral data pre-processing
PCs : the number of Principal Components (PC) or Latent Variables (LV)
Method : the modeling method algorithm used, e.g. PLS

Then the statistical analysis of the PLS model by the different sets (CSet, VSet, Tset).

Calibration Report

Statistical analysis of calibration, validation and test results : 1 Name, 2 Unit, 3 N : number of spectra, 4 N : number of samples, 5 Average spectra count per sample, 6 Reference values, 7 Min, 8 Mean, 9 Median, 10 Max, 11 Standard deviation, 12 Skewness : left (-) or right (+) lack of symmetry, 13 Kurtosis : flat (-) or peaked (+) shape, 14 Model statistics, 15 RPD, 16 R², 17 RMSEC, RMSEP, RMSET : root mean square of prediction errors, 18 SEC, SEP, SET : standard error (bias corrected), 19 Bias, 20 Skewness of prediction errors, 21 Kurtosis of prediction errors, 22 Intercept, 23 Slope, 24 Intercept (reverse), 25 Slope (reverse), 26 Sample Prediction Repeatability Error, 27 Sample Prediction Repeatability Error (of Missing data MSet)

This shows how we deliver the optimal settings. With the statistical values, the NIR model predicted values of all spectra and additional plots you are able to compare with your re-built model to verify that the models perform nearly equally.