(English) We make NIR Chemometrics easy

Hi, we’re CalibrationModel. Our aim is to transform your NIR data to superior calibration models. We do this by using knowledge driven software applying good practices and rules from literature, publications, regulatory guidelines and more. Our service is used by NIR specialists to deliver a valuable model for their NIR analysis measurements. With CalibrationModel services, NIR specialists can find out how their NIR Data can be robust and optimally modeled by which data preprocessing and wavelength selection, etc. You can implement CalibrationModel in a matter of minutes using our contact form and send your NIR data to receive optimized model settings as a blueprint.
NIR specialists (Spectroscopist, Chemometricians) love perfect models. They’re curious about how to improve their models even further, because all NIR models need continuous maintenance and updates.
Using CalibrationModel services, NIR Specialists can deliver real value to their measurement results through powerful model optimization capabilities.
CalibrationModel We make NIR Chemometrics easy. Near-Infrared Data Modeling Calibration Service

Le procedure di calibrazione NIR – Realizzazione di curve di calibrazione NIRS spettroscopia

Do you know the effect that you prefer to try out their favorite data pretreatments in combination and often try the same wavelength selections based spectra of the visualized?

You try as six to ten combinations until one of them selects his favorite calibration model, to then continue to optimize. Since then suddenly fall to outliers, because it goes in depth, so is familiar with the data, we know now the spectra of numbers of outliers and is familiar with the extreme values.

Now, the focus is on the major components (principal components, Latent Variables, factors) and makes sure not to over-fit and under-fit not to. The whole takes a few hours and finally one is content with the model found.

So what would happen if you all in the beginning tried variants found outliers removed and re-evaluated and compared? The results would be better than that of the previous model choice? One does not try out? Because it is cumbersome and takes hours again?

We have developed a software which simplifies this so that also the number of model variations can be increased as desired. The variants generation is automated with an intelligent control system, as well as the optimization and comparing the models and finally the final selection of the best calibration model.

Our software includes all the usual known data pretreatment methods (data pre-processing) and can combine them useful. Since many Preteatments are directly dependent on the wavelength selection, such as the normalization the determined within a wavelength range of the scaling factors to normalize the spectra so that pretreatments with the wavelength ranges may be combined. So a variety of settings sensible model comes together that are all calculated and optimized. For the automatic selection of the relevant wavelength ranges, different methods are used, which are based on the spectral intensities. Thus, for example, regions with total absorption is not used, and often interfering water bands removed or retained.

Over all the calculated model variations as a summary outlier analysis can be made. Are there any new outliers (hidden outlier) discovered, all previous models can be automatically recalculated, optimized and compared without these outliers.

From this great number of calculated models with the statistical quality reviews (prediction performance) the optimum calibration can now be selected. For this purpose, not simply sorting by the prediction error (prediction error, SEP RMSEP) or the coefficient of determination (coefficient of determination r2), but by several statistical and test values are used jointly toward the final assessment of optimal calibration.

Thus we have created a platform that allows the highly automated work what a man can never do with a commercial software.

We therefore offer the largest number of matched to your application problem modeling calculations and choose the best calibration for you!

This means that our results are faster, more accurate, robust and objective basis (person independent) and quite easy for you to apply.

You have the full control of the models supplied by us, because we provide a clearly structured and detailed blueprint of the complete calibration, with all settings and parameters, with all necessary statistical characteristics and graphics.

Using this blueprint, you can adjust the quantitative calibration model itself in the software you use, understand and compare. You have everything under control form model creation, model validation and model refinement.

Your privacy is very important to us. The NIR data that you briefly provide us for the custom calibration development will remain of course your property. Your NIR data will be deleted after the job with us.

Interested, then do not hesitate to contact us.

(English) NIR Spectroscopy Calibration Report for quantitative predictive models

When you send your quantitative NIR spectra data to our NIR Calibration Model Service, you get a detailed calibration report (calibration protocol) of the found optimal calibration settings, so you are able to see all insights and easily re-build the model in your NIR/Chemometric software.

Here is a part of our calibration report, that exactly describes the data used in the calibration set (CSet), the validation set (VSet) and the test set (TSet). The numbers are the number ids of the spectra in your delivered NIR data file.


The calibration method settings and parameters are
Waveselection : the variable selection or wavenumber selection or wavelength selection
Pretreatments : the spectral data pre-processing
PCs : the number of Principal Components (PC) or Latent Variables (LV)
Method : the modeling method algorithm used, e.g. PLS

Then the statistical analysis of the PLS model by the different sets (CSet, VSet, Tset).

Calibration Report

Statistical analysis of calibration, validation and test results : 1 Name, 2 Unit, 3 N : number of spectra, 4 N : number of samples, 5 Average spectra count per sample, 6 Reference values, 7 Min, 8 Mean, 9 Median, 10 Max, 11 Standard deviation, 12 Skewness : left (-) or right (+) lack of symmetry, 13 Kurtosis : flat (-) or peaked (+) shape, 14 Model statistics, 15 RPD, 16 R², 17 RMSEC, RMSEP, RMSET : root mean square of prediction errors, 18 SEC, SEP, SET : standard error (bias corrected), 19 Bias, 20 Skewness of prediction errors, 21 Kurtosis of prediction errors, 22 Intercept, 23 Slope, 24 Intercept (reverse), 25 Slope (reverse), 26 Sample Prediction Repeatability Error, 27 Sample Prediction Repeatability Error (of Missing data MSet)

This shows how we deliver the optimal settings. With the statistical values, the NIR model predicted values of all spectra and additional plots you are able to compare with your re-built model to verify that the models perform nearly equally.

Come sviluppare calibrazioni spettroscopia nel vicino infrarosso nel 21 ° secolo?


The Problem

Calibration modeling is a complex and very important part of NIR spectroscopy, especially for quantitative analysis. If the model is badly designed the best instrument precision and highest data quality does not help getting good and robust measurement results. And NIR Spectroscopy requires periodically recalibration and validation.


How are NIR models built today?

In a typical usage in industry, a single person is responsible to develop the models (see survey). He or she uses a Chemometric software that has a click-and-wait working process to adjust all the possible settings for the used algorithms in dialogs and wait for calculations and graphics and then to think about the next modeling steps and the time is limited to do so. Do we expect to find the best use-able or optimal model that way? How to develop near-infrared spectroscopy calibrations in the 21st Century?


Our Solution

Why not put all the knowledge a good model builder is using into software and let the machines do the possibilities of calculations and presenting the result? Designing the software that way, that the domain knowledge is built-in, not just only the algorithms for machine learning and make it possible to scale the calculations to multi-core computers and up to cloud servers. Extend the Chemometric Software with the Domain Knowledge and make as much computer power available as needed.

As it was since the beginning

User → Chemometric Software → one Computer → some results to choose from

==> User’s time needed to click-and-wait for creating results

Our Solution

User → (Domain Knowledge → automatized Chemometric Software) → many Computers → the best models

==> User’s time used to study the best models and reasoning about his product / process

Note that the “Domain Knowledge” here does perfectly support the User’s product and process knowledge to get the things done right and efficient.


Scaling at three layers

  • Knowledge : use the domain knowledge to drive the Chemometric Software
  • Chemometric Software : support many machine learning algorithms and data pre-processings and make it automatic
  • Computer : support multi-core calculations and scale it to the cloud

The hard part in doing this, is of course the aggregation of the needed domain knowledge and transform it into software. The Domain Knowledge for building Chemometric NIR Spectroscopic models is well known and it’s huge and spreads multiple disciplines. Knowledge-driven software for computing helps to find the gold needle in the haystacks. It’s all about scaling that makes it possible. See Proof of Concept.


New possibilities

  • NIR users can get help working more efficient and getting better models.
  • New types of applications for NIR can be discovered.
  • Evaluation of NIR Applications to replace conventional analytical methods.
  • Hopeless calibrations development efforts can be re-started.
  • Higher model accuracy and robustness can be delivered.
  • Automate the experimental data part of your application study.
  • Person independent optimization will show new solutions, because it’s not limited by a single mindset => combining all the aggregated knowledge and its combinations.
  • Software independent optimization will show new solutions, because none of vendor specific limitations and missing algorithms are present => combining all open available algorithms and there permutations.
  • Computing service is included.

Contact us for trial

Your NIR data is modeled by thousands of different useful calibration models and you get the best of them! That was not possible before in such a easy and fast way! See How it works

(English) Summary of the NIR Chemometric survey polls

(English) What is a NIR calibration used for?

(English) What are pre-developed NIR pre-calibrations?