Spettroscopia e Chemiometria Weekly News #21-24, 2017

Ci spiace, ma questo articolo è disponibile soltanto in English.

Spettroscopia e Chemiometria Weekly News #48+49, 2016

Ci spiace, ma questo articolo è disponibile soltanto in English.

(English) We make NIR Chemometrics easy

Hi, we’re CalibrationModel. Our aim is to transform your NIR data to superior calibration models. We do this by using knowledge driven software applying good practices and rules from literature, publications, regulatory guidelines and more. Our service is used by NIR specialists to deliver a valuable model for their NIR analysis measurements. With CalibrationModel services, NIR specialists can find out how their NIR Data can be robust and optimally modeled by which data preprocessing and wavelength selection, etc. You can implement CalibrationModel in a matter of minutes using our contact form and send your NIR data to receive optimized model settings as a blueprint.
NIR specialists (Spectroscopist, Chemometricians) love perfect models. They’re curious about how to improve their models even further, because all NIR models need continuous maintenance and updates.
Using CalibrationModel services, NIR Specialists can deliver real value to their measurement results through powerful model optimization capabilities.
CalibrationModel We make NIR Chemometrics easy. Near-Infrared Data Modeling Calibration Service

Teoria del campionamento (TOS)

What is Theory of Sampling (TOS)? TOS is a theory about the sampling of materials. Here are some recommended links. Links Gy’s sampling theory TOS forum edited by Professor Kim H. Esbensen Presentations Representative Sampling – a critical success factor for all analytical endeavors (incl. NIR), Kim Esbensen, IDRC 2014 Papers Theory of sampling (TOS) versus measurement uncertainty (MU) – A call for integration, Kim H. Esbensen, Claas Wagner Books Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, Second Edition, Chapter 3. Process Sampling: Theory of Sampling – the Missing Link in Process Analytical Technologies (PAT), Katherine A. Bakeev, Kim H. Esbensen and Peter Paasch-Mortensen Related: Why NIR Method Maintenance?

Come sviluppare calibrazioni spettroscopia nel vicino infrarosso nel 21 ° secolo?


The Problem

Calibration modeling is a complex and very important part of NIR spectroscopy, especially for quantitative analysis. If the model is badly designed the best instrument precision and highest data quality does not help getting good and robust measurement results. And NIR Spectroscopy requires periodically recalibration and validation.


How are NIR models built today?

In a typical usage in industry, a single person is responsible to develop the models (see survey). He or she uses a Chemometric software that has a click-and-wait working process to adjust all the possible settings for the used algorithms in dialogs and wait for calculations and graphics and then to think about the next modeling steps and the time is limited to do so. Do we expect to find the best use-able or optimal model that way? How to develop near-infrared spectroscopy calibrations in the 21st Century?


Our Solution

Why not put all the knowledge a good model builder is using into software and let the machines do the possibilities of calculations and presenting the result? Designing the software that way, that the domain knowledge is built-in, not just only the algorithms for machine learning and make it possible to scale the calculations to multi-core computers and up to cloud servers. Extend the Chemometric Software with the Domain Knowledge and make as much computer power available as needed.

As it was since the beginning

User → Chemometric Software → one Computer → some results to choose from

==> User’s time needed to click-and-wait for creating results

Our Solution

User → (Domain Knowledge → automatized Chemometric Software) → many Computers → the best models

==> User’s time used to study the best models and reasoning about his product / process

Note that the “Domain Knowledge” here does perfectly support the User’s product and process knowledge to get the things done right and efficient.


Scaling at three layers

  • Knowledge : use the domain knowledge to drive the Chemometric Software
  • Chemometric Software : support many machine learning algorithms and data pre-processings and make it automatic
  • Computer : support multi-core calculations and scale it to the cloud

The hard part in doing this, is of course the aggregation of the needed domain knowledge and transform it into software. The Domain Knowledge for building Chemometric NIR Spectroscopic models is well known and it’s huge and spreads multiple disciplines. Knowledge-driven software for computing helps to find the gold needle in the haystacks. It’s all about scaling that makes it possible. See Proof of Concept.


New possibilities

  • NIR users can get help working more efficient and getting better models.
  • New types of applications for NIR can be discovered.
  • Evaluation of NIR Applications to replace conventional analytical methods.
  • Hopeless calibrations development efforts can be re-started.
  • Higher model accuracy and robustness can be delivered.
  • Automate the experimental data part of your application study.
  • Person independent optimization will show new solutions, because it’s not limited by a single mindset => combining all the aggregated knowledge and its combinations.
  • Software independent optimization will show new solutions, because none of vendor specific limitations and missing algorithms are present => combining all open available algorithms and there permutations.
  • Computing service is included.

Contact us for trial

Your NIR data is modeled by thousands of different useful calibration models and you get the best of them! That was not possible before in such a easy and fast way! See How it works

(English) Summary of the NIR Chemometric survey polls

(English) Customized NIR Calibrations

Increase Your Profit with optimized NIR Accuracy

We help you to find the optimal settings for higher NIR accuracy and reliability. You can build your own custom NIR calibration model with this valuable settings. We offer a quantitative NIR Calibration development and optimization service. New: White Paper about the details, what’s behind.

Improve NIR Measurement Accuracy

  • going closer to your product specification limits and maximize profitability
  • optimizing your models yield to process optimization and optimizing productivity
  • compete against other NIR vendors in a feasibility study (NIR salesman)

Easy to use

  • compatible with any NIR vendor
  • no installation, no learning
  • quantitative NIR Calibration Development as a Service

Safety

  • help users avoid common pitfalls of method development
  • before you validate and approve your solution for use in production process:
    • check if a better calibration can be found,
    • compare your calibration with other experts solutions.

Speed

  • no cumbersome trial-and-error modeling steps
  • calculation time is spent on our high performance infrastructure
  • fast results, developed calibrations within days

Fix price

  • fix costs, depends only on data size (not hourly rate for service)
  • huge saving in method development costs
  • easy to plan
More benefits, for whom and where, learn more , contact

(English) NIR Calibration Modeling

The majority of NIR calibrations are generated using a small number of different parameter settings and all too often are restricted to the time a user has available, their spectroscopic and chemometric knowledge and their ability (tedious use of the software) to choose and combine all the possible parameter settings required for good calibrations.

There are many published standards and guidelines (protocols) available for developing NIR calibrations from Standards Consortium such as ASTM, EMEA, ICH, IUPAC, ISO, USP, PASG etc. as well as many good recommendations and guidelines found in various textbooks and papers.

The difficulty with so many ‘Protocols’ for the NIR user is to have them all available and in their thought processes during calibration work and in addition to execute, check and challenge all calibrations generated manually. This is time consuming and sometimes boring repetitive work.

To simplify this for the person generating the NIR Calibrations, we have collected the good practices protocols and integrated them into our service that automates the calibration building and evaluation procedures.

to part 2

Spettroscopia NIR e chemiometria sondaggi, indagini e valutazioni (Parte 2)

5. Calibration Precision

What do you believe, can NIR calibration models be more precise than reference values?

6. Calibration Maintenance

How often do you update your quantitative calibrations per year?

7. Quantitative Calibrations

How many quantitative (%) calibrations do you have in use?

8. Quantitative Parameters

In all your quantitative calibrations, how many parameters (properties) you have in total?

9. Qualitative Calibrations

How many qualitative (identification) calibrations do you have in use?

Please vote and see the assessments below.

Calibration Precision
What do you believe, can NIR calibration models be more accurate than reference method?
Calibration Maintenance
How often do you update your quantitative calibrations per year?
Quantitative Calibrations
How many quantitative (%) calibrations do you have in use?
Quantitative Parameters
In all your quantitative calibrations, how many parameters (properties) you have in total?
Qualitative Calibrations
How many qualitative (identification) calibrations do you have in use?

Part 1