Spectroscopy and Chemometrics News Weekly #47, 2015

Near Infrared

NIR-Sensor ermittelt Trockensubstanz während der Mischwagenbefüllung | Futterkomponente LINK

Ultra-low maintenance FTNIR analyzer for the refining & petrochemical industries | pauto LINK


Infrared

Seeing Through Crude Oil for Efficient Oil Separations using Short-Wave Infrared (SWIR) Cameras – AZoSensors LINK


Facts

RoboBees Can Fly and Swim. What’s Next? Laser Vision – Smithsonian UAS UAV LINK


Equipment

Scientists create an all-organic UV on-chip spectrometer – The U.S. Department of Energy’s Ames LINK


Agriculture

… detection of contaminants in agro-food products, … melamine levels in milk using vibrational spectroscopy LINK


Laboratory

Examining Pigmented Human Tissue using SWIR Raman Spectroscopy – AZoSensors LINK


Other

SCiO Molecular Scanner UNBOXING – Video LINK



CalibrationModel.com

Dear NIR-Spectrometer vendors, this is about how you can improve customer web-traffic | NIRS Spectrometer LINK

Efficient development of new quantitative prediction equations for multivariate NIR spectra | spectra LINK

How to Develop Chemometric Near-Infrared Spectroscopy Calibrations in the 21st Century? | NIR LINK

How to Develop Near-Infrared Spectroscopy Application Today? | pharma lab analysis chemist TechTrends LINK

Improve chemical analysis accuracy by optimized chemometric models for Near-Infra-Red (NIR) Spectroscopy LINK

Improving Accuracy, Precision and Robustness of NIR-analysis LINK

NewsLetter: Spectroscopy and Chemometrics News Weekly 46, 2015 | Molecular Spectroscopy NIRS Chemometrics Raman LINK

Pro Tip: The NIR calibration is the central key to accurate NIR measurement LINK

Services for professional Development of Near-Infrared Spectroscopy Calibration Methods | NIR Quality Testing LINK



Le procedure di calibrazione NIR – Realizzazione di curve di calibrazione NIRS spettroscopia

Do you know the effect that you prefer to try out their favorite data pretreatments in combination and often try the same wavelength selections based spectra of the visualized?

You try as six to ten combinations until one of them selects his favorite calibration model, to then continue to optimize. Since then suddenly fall to outliers, because it goes in depth, so is familiar with the data, we know now the spectra of numbers of outliers and is familiar with the extreme values.

Now, the focus is on the major components (principal components, Latent Variables, factors) and makes sure not to over-fit and under-fit not to. The whole takes a few hours and finally one is content with the model found.

So what would happen if you all in the beginning tried variants found outliers removed and re-evaluated and compared? The results would be better than that of the previous model choice? One does not try out? Because it is cumbersome and takes hours again?

We have developed a software which simplifies this so that also the number of model variations can be increased as desired. The variants generation is automated with an intelligent control system, as well as the optimization and comparing the models and finally the final selection of the best calibration model.

Our software includes all the usual known data pretreatment methods (data pre-processing) and can combine them useful. Since many Preteatments are directly dependent on the wavelength selection, such as the normalization the determined within a wavelength range of the scaling factors to normalize the spectra so that pretreatments with the wavelength ranges may be combined. So a variety of settings sensible model comes together that are all calculated and optimized. For the automatic selection of the relevant wavelength ranges, different methods are used, which are based on the spectral intensities. Thus, for example, regions with total absorption is not used, and often interfering water bands removed or retained.

Over all the calculated model variations as a summary outlier analysis can be made. Are there any new outliers (hidden outlier) discovered, all previous models can be automatically recalculated, optimized and compared without these outliers.

From this great number of calculated models with the statistical quality reviews (prediction performance) the optimum calibration can now be selected. For this purpose, not simply sorting by the prediction error (prediction error, SEP RMSEP) or the coefficient of determination (coefficient of determination r2), but by several statistical and test values are used jointly toward the final assessment of optimal calibration.

Thus we have created a platform that allows the highly automated work what a man can never do with a commercial software.

We therefore offer the largest number of matched to your application problem modeling calculations and choose the best calibration for you!

This means that our results are faster, more accurate, robust and objective basis (person independent) and quite easy for you to apply.

You have the full control of the models supplied by us, because we provide a clearly structured and detailed blueprint of the complete calibration, with all settings and parameters, with all necessary statistical characteristics and graphics.

Using this blueprint, you can adjust the quantitative calibration model itself in the software you use, understand and compare. You have everything under control form model creation, model validation and model refinement.

Your privacy is very important to us. The NIR data that you briefly provide us for the custom calibration development will remain of course your property. Your NIR data will be deleted after the job with us.

Interested, then do not hesitate to contact us.

Proof of Concept

Chemometric software competitions (aka shootouts) are a good way to check algorithms, software and knowledge against all other experts in the field.

Imagine that the prediction results can be produced with any kind of software and newest algorithms.

And we just use PLS right to generate models that can be used on all NIR software systems, because PLS is a quasi standard, supported in all major chemometrics software.

Our software framework reached very good results, got gold (rank #1) and silver (rank #2) during well known international NIR Chemometric software shootouts* so far, the competitions are held bi-annual.

Rank / competitors Competition / Conference Year
#1 / 1 ** Kaji / ANSIG 2014
#1 / 150 Kaji / ANSIG 2012
#2 / ??? IDRC / IDRC 2012
The Kaji Competition

A set of NIR spectral data will be available for downloading from the ANISG website and contestants will be asked to find and explain a “best” chemometric model to robustly predict samples of the same type.
A panel will select the three “best” entries based on the predicted results and spectroscopic explanation of the products and attributes of interest.

http://www.anisg.com.au/the-kaji-competition


The IDRC Competition

The Software Shootout has been a staple of the IDRC. It is a competition amongst participants of the conference that aims at determining the person who developed the best model and obtained the lowest prediction error for a particular problem.
Every IDRC, a new challenge is proposed to participants. The challenge consists of a data set with calibration, test and a validation set.
Participants are given target values for the calibration and test sets but must do their best to develop a model that will predict the validation set as accurately and precisely as possible. Challenges from all sorts of fields of NIRS have been used (agriculture, biomedical, pharmaceutical, soil, …).

IDRC


*) The author was unable to present the results at the conferences, so this ranking was not official but confirmed by the shootout organizers. Thanks go to Benoit Igne, IDRC 2012 shootout organizer and Steve Holroyd, Kaji Competition organizer at ANISG Conference 2012.

Conclusion

Our chemometric software framework can significantly reduce the time spent for NIR method development and fine optimization. The time saving can be achieved through highly automated experiments and the usage of cloud computing. Calibrations are built and evaluated using automated good practices protocols resulting in useful, precise and robust Calibrations. The high number of experiments enables a deep screening of the solution domain to find the optimum calibration settings, something currently unavailable in standard chemometric software.

**) We were the only participator that got the 4 competition tasks (4-times more than usual) completed in that short time and submitted the fully documented results. After the competition, the information was given, that the data was originated from forages and the constituents were dry matter, organic matter digestibility, protein and ash. Thanks go to Daniel Cozzolino, Kaji 2014 Competition organizer.

(English) Potential usage of NIR analysis and its industry fields of applications

(English) What is a NIR calibration used for?

(English) Recent advanced chemometric methods

Ci spiace, ma questo articolo è disponibile soltanto in Deutsch e English.

Benefici

Il servizio di calibrazione NIR offre i seguenti vantaggi: Risparmiare soldi
  • Migliorando la precisione e l’affidabilità di modelli di calibrazione NIR pre-esistenti si possono aumentare le potenzialità in vari processi di produzione, nonché la garanzia di qualità.
  • Maggiore accuratezza dell’analisi assicura un miglior controllo del processo produttivo, flusso di processo ottimale e meno scarti di produzione.
  • Velocità e poco costo per creare modelli di calibrazione professionali.
  • Sollievo del personale.
Risparmiare tempo
  • Ripulendo i dati e aumentandone la qualità – dati mancanti, ricerca di valori anomali, dati errati (informazioni contraddittorie), rimozione di valori anomali.
  • Ricercando impostazioni ottimali dei parametri del modello NIR (set di calibrazione, selezione lunghezza d’onda, pre-trattamentidi dati, selezione fattore).
  • Calcolando diverse varianti del modello.
  • Facendo valutazioni di convalida e selezione del modello ottimale (errore, SEP, RMSEP, RMSEC, RPD, fit, R2, bias, slope, ).
  • Per il calcolo dei modelli di calibrazioni enormi.
Precisione analitica NIR
  • Maggiore affidabilità grazie alla precisione e robustezza dei modelli di calibrazione NIR.
  • Possibilità di confronto del metodo creato e quello eventualmente da acquistare.
  • Aumento della performance di accuratezza analitica quanto possibile.
  • Miglioramento della robustezza cambiando matrice e possibile derivata.
Modelli di calibrazione NIR professionali
  • Decenni di esperienza nella chemiometria per la spettroscopia NIR.
  • Su base teorica e applicata di buone tecniche e know-how.
  • Applicazione di linee guida.
  • Presenza di venditori indipendenti di software chemiometrici NIR.
  • Manutenzione equazione di taratura.
  • Migliorare la solidità del modello di predizione NIR.
  • Evitare trappole e trabocchetti della complicata chemiometria.
Risultati nel dettaglio
  • Il servizio fornisce le impostazioni di calibrazione ottimali per i vostri dati NIR.
  • È possibile avere una piena conoscenza della calibrazione NIR, in quanto vengono forniti in modo dettagliato valori statistici come indice di performance assistita e relativi grafici.
Un ulteriore aspetto dei servizi di modellazione chemiometrica.