Spectroscopy and Chemometrics News Weekly #24, 2020

NIR Calibration-Model Services

Machine Learning for NIR Spectroscopy as a Service, a Game Changer for Productivity and Accuracy/Precision! Use the free NIR-Predcitor software to combine NIRS + Lab data and send your Calibration Request. LabManager Analysis MachineLearning LINK

“Food quality digitized at the “speed of light” ” : Food Sample -> measured with a NIRS spectrometer -> spectral data -> ⚖️ predicted with a NIRPredictor & CalibrationModel -> % quantitative results -> quality decision -> LINK

Spectroscopy and Chemometrics News Weekly 23, 2020 | NIRS NIR Spectroscopy MachineLearning Spectrometer Spectrometric Analytical Chemistry Chemical Analysis Lab Labs Laboratories Laboratory Software IoT Sensors QA QC Testing Quality LINK

Spektroskopie und Chemometrie Neuigkeiten Wöchentlich 23, 2020 | NIRS NIR Spektroskopie MachineLearning Spektrometer IoT Sensor Nahinfrarot Chemie Analytik Analysengeräte Analysentechnik Analysemethode Nahinfrarotspektroskopie Laboranalyse LINK

Spettroscopia e Chemiometria Weekly News 23, 2020 | NIRS NIR Spettroscopia MachineLearning analisi chimica Spettrale Spettrometro Chem IoT Sensore Attrezzatura analitica Laboratorio analisi prova qualità Analysesystem QualityControl LINK

Near-Infrared Spectroscopy (NIRS)

“Fiber Content Determination of Linen/Viscose Blends Using NIR Spectroscopy” LINK

“Characterization of a high power time-domain NIRS device: towards faster and deeper investigation of biological tissues” LINK

“… chamosite from an hydrothermalized oolitic ironstone (Saint-Aubin-des-Châteaux, Armorican Massif, France): crystal chemistry, Vis-NIR spectroscopy (red variety) and …” LINK

“Study on evolution methods for the optimization of machine learning models based on FT-NIR spectroscopy” LINK

“Vibrational coupling to hydration shell – Mechanism to performance enhancement of qualitative analysis in NIR spectroscopy of carbohydrates in aqueous environment.” LINK


For food analysts, how to choose between a ‘classic’ method and a ‘modern’ technique such as FT-NIR or RMN? Our recently available paper tries to answer that question based on error evaluation: LINK

“FT-NIR combined with chemometrics versus classic chemical methods as accredited analytical support for decision-making: application to chemical compositional compliance of feedingstuffs” LINK

Infrared Spectroscopy (IR) and Near-Infrared Spectroscopy (NIR)

“Functional Classification of Feed Items in Pampa Grassland, Based on Their Near-Infrared Spectrum” LINK

“A Rapid and Nondestructive Approach for the Classification of Different-Age Citri Reticulatae Pericarpium Using Portable Near Infrared Spectroscopy” LINK

“Near-infrared spectroscopy as a new method for post-harvest monitoring of white truffles” LINK

“Rapid Prediction of Apparent Amylose, Total Starch, and Crude Protein by Near‐Infrared Reflectance Spectroscopy for Foxtail Millet (Setaria italica)” LINK

“New Induced Mutation Genetic Algorithm for Spectral Variables Selection in Near Infrared Spectroscopy” LINK

“Quantification of Plant Root Species Composition in Peatlands Using FTIR Spectroscopy” LINK

“Functional classification of feed items in pampa grassland, based on their near-infrared spectrum” LINK

“A feasibility of nondestructive rapid detection of total volatile basic nitrogen content in frozen pork based on portable near-infrared spectroscopy” LINK

” Machine Learning Classification of Articular Cartilage Integrity Using Near Infrared Spectroscopy” LINK

“Has the time come to use near-infrared spectroscopy in your science classroom?” LINK

“Feasibility of using near-infrared measurements to detect changes in water quality” LINK

“A novel CC-tSNE-SVR model for rapid determination of diesel fuel quality by near infrared spectroscopy” LINK

“Optimizing analysis of coal property using laser-induced breakdown and near-infrared reflectance spectroscopies” LINK

“Probing Active Sites and Reaction Intermediates of Electrocatalysis Through Confocal Near-Infrared Photoluminescence Spectroscopy: A Perspective.” LINK

“Determination of in situ ruminal degradation of phytate phosphorus from single and compound feeds in dairy cows using chemical analysis and near-infrared spectroscopy” LINK

“Non-destructive assessment of moisture content and modulus of rupture of sawn timber Hevea wood using near infrared spectroscopy technique” LINK

“Accurate prediction of glucose concentration and identification of major contributing features from hardly distinguishable near-infrared spectroscopy” LINK

” Multiblock PLS-DA on fecal and plasma visible-near-infrared spectra for discriminating young bulls according to their efficiency. Preliminary results” LINK

“Examining the Utility of Visible Near-Infrared and Optical Remote Sensing for the Early Detection of Rapid ‘Ōhi‘a Death” LINK

“Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral …” LINK


Raman Spectroscopy

“Differentiating cancer cells using Raman spectroscopy (Conference Presentation)” LINK

“Applied Sciences, Vol. 10, Pages 3545: Raman Spectral Analysis for Quality Determination of Grignard Reagent” LINK

“Surfaceenhanced Raman spectroscopy for onsite analysis: A review of recent developments” LINK

Hyperspectral Imaging (HSI)

“Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance” LINK

“A hyperspectral microscope based on a birefringent ultrastable common-path interferometer (Conference Presentation)” LINK

“Hyperspectral imaging of beet seed germination prediction” LINK

“Hyperspectral imaging for discrimination of Keemun black tea quality categories: Multivariate calibration analysis and data fusion” LINK

“Potential of deep learning and snapshot hyperspectral imaging for classification of species in meat” LINK

“Performance of Fluorescence and Diffuse Reflectance Hyperspectral Imaging for Characterization of Lutefisk: A Traditional Norwegian Fish Dish” LINK

Spectral Imaging

“Identify the ripening stage of avocado by multispectral camera using semi-supervised learning on small dataset” LINK

“Multispectral imaging for predicting the water status in mushroom during hotair dehydration” LINK

Chemometrics and Machine Learning

“Sample selection, calibration and validation of models developed from a large dataset of near infrared spectra of tree leaves” Eucalyptus forage quality LINK

“Determination of Loline Alkaloids and Mycelial Biomass in Endophyte-Infected Schedonorus Pratensis by Near-Infrared Spectroscopy and Chemometrics” LINK

“Detection and Assessment of Nitrogen Effect on Cold Tolerance for Tea by Hyperspectral Reflectance with PLSR, PCR, and LM Models” LINK

“Application of vibrationnal spectroscopy and chemometrics to access the quality of Locally produced antimalarial medicines in the Democratic Republic of Congo.” LINK

“Predicting total petroleum hydrocarbons in field soils with VisNIR models developed on laboratoryconstructed samples” LINK

“National spectral data and learning algorithms for potentially toxic elements modelling in forest soil horizons” LINK

“Rapid determination of the textural properties of silver carp (Hypophthalmichthys molitrix) using near-infrared reflectance spectroscopy and chemometrics” LINK

“Vibrational spectroscopy and chemometrics for quantifying key bioactive components of various plum cultivars grown in New Zealand” LINK

Equipment for Spectroscopy

“NearInfrared Multipurpose LanthanideImaging Nanoprobes” LINK

Process Control and NIR Sensors

“Non-invasive measurement of quality attributes of processed pomegranate products” LINK

Environment NIR-Spectroscopy Application

“Spectral Feature Selection Optimization for Water Quality Estimation.” LINK

“Remote Sensing, Vol. 12, Pages 931: Optical Water Type Guided Approach to Estimate Optical Water Quality Parameters” LINK

“Estimation of total nitrogen and organic carbon contents in mine soils with NIR reflectance spectroscopy and various chemometric methods” LINK

Agriculture NIR-Spectroscopy Usage

“Development of a compact multimodal imaging system for rapid characterisation of intrinsic optical properties of freshly excised tissue (Conference Presentation)” LINK

“Agriculture, Vol. 10, Pages 181: Grafting and ShadingThe Influence on Postharvest Tomato Quality” LINK

“Remote Sensing, Vol. 12, Pages 940: Editorial for the Special Issue Estimation of Crop Phenotyping Traits using Unmanned Ground Vehicle and Unmanned Aerial Vehicle Imagery”” LINK

“Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm.” LINK

“The development of models to predict the nutritional value of feedstuffs and feed mixture using NIRS” LINK

“Permafrost soil complexity evaluated by laboratory imaging Vis‐NIR spectroscopy” LINK

Horticulture NIR-Spectroscopy Applications

“Recent advances in imaging techniques for bruise detection in fruits and vegetables” LINK

Forestry and Wood Industry NIR Usage

“Nutritional characterization of trees from the Amazonian piedmont, Putumayo department, Colombia” LINK

Food & Feed Industry NIR Usage

“Approaches, applications, and future directions for hyperspectral vegetation studies: An emphasis on yieldlimiting factors in wheat” LINK

“Beef Nutritional Quality Testing and Food Packaging” LINK

Laboratory and NIR-Spectroscopy

“UV Irradiation and Near Infrared Characterization of Laboratory Mars Soil Analog Samples: the case of Phthalic Acid, Adenosine 5′-Monophosphate, L-Glutamic Acid …” molecular biosignatures; spectroscopy; lifedetection LINK



“Effect of substrate temperature on the microstructural and optical properties of RF sputtered grown ZnO thin films” LINK

Using near-infrared light to 3-D print an ear inside the body LINK

“Eco-friendly dye sensitized solar cell using natural dye with solid polymer electrolyte as hole transport material” solarcell LINK


New: NIR-Predictor V2.6 with new features

The new Version of the free NIR-Predictor
supports GRAMS .SPC, CSV, JCAMP and multiple native file formats
of miniature, mobile and desktop spectrometers
get your spectra analyced as easy as Drag’n’Drop.

Spectra Plots and Histograms on the Prediction Report
  • NIR-Predictor is an easy to use NIR software for all NIR devices
    to produce quantitative results out of NIR data.

  • CalibrationModel Service provides development of
    customized calibrations out of NIR and Lab data.

  • It allows to use NIR with your own customized
    models without the need of Chemometric Software!

  • We do the Machine Leraning for your NIR-Spectrometer
    and with the free NIR-Predictor you are
    able to analyze new measured samples.

  • For NIR-Vendors we also offer the
    Software Development Kit (SDK) for OEM Predictor use
    via the Application Programming Interface (API).
    Think of a sencod predictor engine,
    as a second heart in your system.


Key Features of NIR-Predictor

  • Super flexible prediction with automatic file format detection
  • Support for many mobile and desktop NIR Spectrometers file format
  • Application concept allows to group multiple Calibrations together for an Application
  • Prediction Report shows Histogram Charts of the tabulated prediction results
  • Sample based Properties File Creator for combining NIR and Lab reference data
  • Checked creation of a single file Calibration Request

Super flexible prediction

Loads multiple files at once in

  • different file-formats and …
  • different wave-ranges and wave-resolutions and …
  • predicts each spectrum with all compatible calibrations and …
  • merges the results in a report and …
  • saves the report as HTML.

It allows you to

  • comparing measurements
  • compare different calibrations
  • compare different spectrometers,
    carry out your own round-robin amongst the vendors’ instruments.
  • compare different spectra file formats

With no configuration and no special menu command,
just drag & drop your data files.


Properties File Creator

A tool for the NIR-User to create the property file easily. It helps to create a CSV file from the measured spectra files with sample names and properties to edit in Spreadsheet/EXCEL software. Lets you enter Lab-Reference-Values in a sample-based manner, corresponding to your sample spectra for calibration. It contains clever automatic analysis mechanisms of inconsistencies in your raw-data to increase the data quality for calibration. Provides detailed analyzer information for manual data cleanup when needed.

It’s time saving and less error prone because you DON’T need to open each spectrum file separately in an editor and copy the spectral values into a table grid beside the Lab-values.

Properties File Creator saves you from:

  • manually error prone and boring tasks
  • importing multiple data files and combining it’s content manually into a single data file to append the lab reference values (aka properties)
  • programming and writing scripts to transform the data into the shape needed
  • no trouble with data handling of
    • Wavelength / Wavenumber information (x-axis)
    • Absorbance / Reflectance labeling (y-axis)
    • checking compatibility of the raw data before merging
    • Averaging Spectral Intensities of a Sample
    • coping, flipping and transposing rows and colums to get the X-Block and Y-Block data sets ready for calibration modeling
    • limited and error prone table grid functionality

Because it’s all automatic and you can check the results and get the analysis information!

Properties File Creator provides you – a individual template based on your raw-data for combining NIR and Lab-values – analysis and checks for better data quality for calibration

Top 8 Reasons why you should use
Automated NIR Calibration Service

  • No subjective model selection
  • No variation in results and interpretation
  • No overfitting model
  • Better accuracy
  • Better precision
  • Time saving!
  • No software cost (no need for Chemometric software and training)
  • One free prediction software for all your NIR systems

Reduce Total Cost of Ownership (TCO) of your NIR

To be ahead of competitors
  • by not owning a chemometric software
  • by not struggling days with these complicated software
  • by not deep dive into chemometrics theory
It takes significant know-how and continous investment to develop calibrations
  • You need to have the relevant skill sets in your organization.
  • That means salaries (the biggest expense in most organizations)
To get most out of it, start now!
  • use the free NIR-Predictor together with your NIR-Instrument software
  • as an NIR-Vendor, integrate the free NIR-Predictor OEM into your NIR-Instrument software
  • don’t delay time-to-market
Read more about NIR Total cost of ownership (TCO)


About the included Demo-Spectra and Demo-Calibrations

The demo calibrations for the spectrometers from

  • Si-Ware Systems
  • Spectral Engines
  • Texas Instruments

are built with the raw data, thankfully provided from Prof. Heinz W Siesler, from this publication

“Hand-held near-infrared spectrometers:
State-of-the-art instrumentation and practical applications”
Hui Yan, Heinz W Siesler
First Published August 20, 2018 Research Article

The demo calibrations for the FOSS are built with the

ANSIG Kaji Competition 2014 shootout data


Quickstart: NIR-Predictor – Manual

Features and Version History: NIR-Predictor – Release Notes History

Supported NIR Spectra Formats: NIR-Predictor supported Spectral Data File Formats

Frequently Asked Questions: NIR-Predictor – FAQ

WebShop : CalibrationModel WebShop